

om furling units BFBM(A80) hyc

- Foresail Furlers GFM (B13) (B15) manual foresail furler FT furler (B10) flat tack foresail furler GFI (B57) hydraulic foresail furler

- Sunny (HT0) manual furlers for removable shades GFSM (B28) "flush-deck" manual foresail furlers for fixed stays GFSI (B79)- GFSE (B28) "flush-deck" hydraulic for electric foresail furlers for fixed stays GFSI CTS (B74) "flush-deck" hydraulic foresail furler for torsional stays SIT (G22) & SET (C21) "flush-deck" hydraulic or electric furler with cylinder for removable stays Foil (B82) with expanding openable connector "OPEN" high load halyard swivel (B80)

RLG-CODE

- RLG EVO (C11) (C60) furling system for Gennakers ROLLGEN STAY KIT (C64) special stay for RLG EVO RLG EVO S (C11) (C60) furling system for structural stays BWSE (C40) bettric furler for bowsprit BWS1 (C40) hydraulic furler for bowsprit PE (C35) electric furling pad eye PI (C36) hydraulic furling pad eye RLG-CODE GFI (C21) hydraulic furler RLG-CDDE GFI (C21) hydraulic furler

- Optional EVO Luff control Thimbles Low friction rings Snap Sharkle Double lashing pin Boards for single cable stay and strops 2:1 Pulley Top Down Joint Swivel Quick Release Pin Eye Bail Backstay Block (O90) s.s. standing wire pulley Boards (C90) for single cable stay and strops Low friction rings (C90)

- Hydraulic cylinders Hydraulic cylinder (E20) (E21) (E22) Cylinder accessories (E30) (E32) Hydraulic boom vang (E19) BPC-TRM (E02) hydraulic cylinder with tackle BSCP (E02) cylinder with spherical fulcrum BSCT (E04) hydraulic stay tensioning cylinder with spherical fulcrum BCPO (E07) hydraulic stay tensioning cylinder BCBM (E30) hydraulic stay tensioning cylinder with spherical fulcrum BCPD (E07) hydraulic stay tensioning cylinder with spherical fulcrum BCPD (E07) hydraulic stay tensioning cylinder with spherical fulcrum BCPD (E07) hydraulic stay tensioning cylinder with spherical fulcrum BCPD (E07) hydraulic stay tensioning cylinder with spherical fulcrum BCPD (E07) hydraulic stay tension model function func

- Deck Equipment Vang (GLU) kicker with mechanical spring BTM (FL0) mechanical stay adjuster BTV (FL0) handwheel mechanical stay adjuster

- Mainsail Furlers RGEM (A10) manual external mainsail furler RGEEL (A12) electric external mainsail furler RGIM (A20) manual in-mast mainsail furler RGIEL (A22) electric in-mast mainsail furler RGIEL (A22) electric in-mast mainsail furler RGI (A60) RGEL (A50) TBL (A61) TBEL (A51) "combined" mainsail motorization and outhaul /
- Captive Winches Electric and Hydraulic Captive Winches with line front output (P31) (P01) Electric and Hydraulic captive winches with line side output (P31) (P01)
- Quality Bamar Facilities

160 mm on mandrel Ø 110 200 mm on mandrel Ø 140

Weight kg	F3 Reefed Sail Vertical max WL** t	F2 Horizontal Pull max WL* t	F1 Vertical Pull max WL* t	Boom max length (indicative not binding) m	Mandrel External Ø mm
10	1,5	L	1,5	Ø	110
	2,5		2,5	ø	

BFBMM (ABT)

manual boom furling device

Bamar BFBMM is a new and innovative line of manual mainsail furling mechanisms to be installed on furling booms manufactured by any boom maker.

The unit has a cylindrical shape, designed to be housed inside the mainsail furling mandrel. It is controlled by an endless line which operates a furling pulley equipped with an easy handling manual mechanical lock to allow you keep reefing positions.

The kir may be completed by an optional boom toggle. The series is available in two Sizes: - 110 for mandrels with external Ø 110 mm – max boom E length 6 m approx - 140 for mandrels with external Ø 140 mm – max boom E length 8 m approx

Electric upgrade with Bamar BFBME motorizations is possible. Size 140 may also be hydraulically motorized. You will be able to keep same mandrel and toggle, and install the equivalent motorized version.

Bamar BFBMM is not only compact and easy to install, but it also allows for the minimum distance between aft-face of the mast and sail tack. This makes sail hoisting and furling in easier and neater.

Ø	4 Model	6 00	CO1		3 I I I I I I I I I I I I I I I I I I I	G ngth ap	8 m) xorq	20 C5	22	26	30	3	bearing race double ball bearing race	Down or take on a double half		C6 drum is entirely manufactured in polished s.s.	The drum is entirely made in anodized aluminum alloy and s.s. parts are insulated by means of a nylon film. It has been conceived in order to be easily fitted by means of simple tools.	The furling drum rotates on a double race of ball bearings, which do not require neither lubrication nor maintenance. The furling drum is hollow inside, thus allowing for a tumbuckle to be housed inside and for the stay to pass through.	Manual foresail furler available in different sizes CO, COT, C1, C2, C3, C4, C5 and C6 (for either 1x19 Wire stays from Ø 4 to Ø 26 mm, or Rod from #10 to #91). The kit is supplied complete with aluminum furling foils and halyard swivel. It is equipped with link plates which may be cut to measure in order to customize tack height.	manual foresail furler	GFM ^(B13) - (B15)		
******											291			ur		A							
	Max	_							N					1. THE	F		-						
Weight kg	stay length (suggested) m	/lax sail area (m²150%)	Furling line	Weight kg/m	Foil length m	Foil type	Clevis pin Ø mm	Equivalent in # rod	Max forestay Ø mm	Model		م ا	2 2 B	2	C0/C0T								
Weight Kg 1,6	stay length (suggested) m 9	4ax sail area (m [:] 150%) 27	Furling line Included	Weight kg/m 0,66	Foil length m 1,5	Foll type BMG30R	Clevis pin Ø mm 8-10	Equivalent in # rod -10	Max forestay Ø mm 4 - 7	Model		8 6	5 2 E	Q Q	Model C0/C0T								
Weight Kg 1,6 1,6	stay length (suggested) m 9 10,5	Aax sail area (m²150%) 27 30	Furling line Included	Weight kg/m 0,66 0,66	Foillength m 1,5 1,5	Folltype BMG30R BMG30R	Clevis pin Ø mm 8-10 8-10-12	Equivalent in # rod -10 -10	Maxforestay Ømm 4-7 4-7	Model CO COT		06 933	C3 788	C1 500	Model mm C0/C0T 482]		
Weight kg 1,6 1,6 2,8	stay length (suggested) m 9 10,5 15	Aax sail area (m²150%) 27 30 45	Furting line Included	Weight kg/m 0,66 0,66 0,66	Foillength m 1,5 1,5 1,5	Foll type BMG30R BMG30R BMG30R	Clevis pin Ømm 8-10 8-10-12 8-10-12	Equivalent in # rod _10 _10 _10	Maxforestay@mm 4-7 4-7 5-8	Model CO COT CI		C6 933	82 D	C1 500	Model mm C0/C0T 482								
Weight Kg 1,6 1,6 2,8 4	stay length (suggested) m 9 10,5 15 18	Aax sail area (m ² 159%) 27 30 45 70	Furling line Included	Weightkg/m 0,66 0,66 0,92	Folllengthm 1.5 1.5 1.5 1.5	Follsype BMG30R BMG30R BMG30R BMG40R	Clevispin Ømm 8-10 8-10-12 8-10-12 12-14-16	Equivalent in # rod -10 -10 -10 -17	Maxforestay Ømm 4-7 4-7 5-8 8-10	Model CO COT CT		100 526 50 86 1014 50 86 1014 50	6 81 D	C. 500 30	Model mm mm c0/c07 482 28						 	Q	
Weight kg 1,6 1,6 2,8 4 5,8	stay length (suggested) m 9 10,5 15 18 19,5	Aax sail area (m²150%) 27 30 45 70 100	Furling line Included Not included	Weight kg/m 0,66 0,66 0,92 0,92	Foillengthm 1,5 1,5 1,5 1,5 1,5	Fol type BMG30R BMG30R BMG30R BMG40R BMG40R	Clevis pin Ømm 8-10 8-10-12 8-10-12 12-14-16 16-18-22	Equivalent in # rod -10 -10 -10 -17 -22	Maxforestay Ømm 4-7 4-7 5-8 8-10 10-12	Nodel C		60 50 50 50 50 50 50 50 50 50 50 50 50 50	а 100 година и 10	CI 500 30	Model mm mm C0/C0T 482 28	>	B					ØC	
Weight kg 1,6 1,6 2,8 4 5,8 6	stay length (suggested) m 9 10,5 15 18 19,5 21	Aax sail area (m² 150%) 27 30 45 70 100 135	Furling line Included Not included	Weight kg/m 0.66 0.66 0.66 0.92 0.92 1.32	Föillengthm 1,5 <th< th=""><th>Foll type BMG30R BMG30R BMG30R BMG40R BMG40R BMG40R BMG50R</th><th>Clevis pin 0 mm 8-10 8-10-12 8-10-12 12-14-16 16-18-22 16-18-22</th><th>Equivalent in # rod _ 10 _ 10 _ 10 _ 17 _ 22 _ 30</th><th>Maxforestay Ømm 4-7 4-7 5-8 8-10 10-12 12-14</th><th></th><th></th><th></th><th></th><th>CI 500 30 179 C2 692 37 214</th><th>Model mn mn mn C0/C0T 482 28 132</th><th>B ØC</th><th></th><th></th><th></th><th></th><th></th><th>ас ————————————————————————————————————</th><th></th></th<>	Foll type BMG30R BMG30R BMG30R BMG40R BMG40R BMG40R BMG50R	Clevis pin 0 mm 8-10 8-10-12 8-10-12 12-14-16 16-18-22 16-18-22	Equivalent in # rod _ 10 _ 10 _ 10 _ 17 _ 22 _ 30	Maxforestay Ømm 4-7 4-7 5-8 8-10 10-12 12-14					CI 500 30 179 C2 692 37 214	Model mn mn mn C0/C0T 482 28 132	B ØC						ас ————————————————————————————————————	
Weight kg 1,6 1,6 2,8 4 5,8 6 14	stay length (suggested) m 9 10,5 15 18 19,5 21 25	Aax sail area (m² 150%) 27 30 45 70 100 135 150	Furling line Included Not included	Weight kg/m 0,66 0,66 0,66 0,92 0,92 1,32 2,44	Foillengthm 1,5 1,5 1,5 1,5 1,5 3,0	Foll type BMG30R BMG30R BMG30R BMG40R BMG40R BMG50R BMG52 60	Clevis pin Ømm 8-10 8-10-12 8-10-12 12-14-16 15-18-22 15-18-22 21,5-22-25	Equivalent in # rod -10 -10 -17 -22 -30 -40 -1	Maxforestay/Ømm 4-7 4-7 5-8 8-10 10-12 12-14 14-16				G 78 59 26	CI 500 30 179 C2 692 37 214	Model mm mm mm mm C0/C0T 482 28 132		B					Ø (

r furler "	2	3
furler	-	
furler	h	
furler		
urler		
urler ^(m)		
Irler	-	C
rler	'	
-ler	-	
ler ®		
		Ω
(810		
		(B10

flat tack foresail furler

A new range of manual foresail furlers is born. It is characterized by a low tack fitting above deck.

As in the the GFM Crociera series, the operating mechanism works with free Definin (0 10 mm) ball bearing races running on races machined from solid hardcote anodized aluminium. This new line of drums called "Flat Tack Furler" (FT Furler) is to be matched with the classic set of Bamar BMG 30 -40 -50 R furling foils.

Extreme operational ease, light weight, reduced overall dimensions and very low maintenance are the some of the key elements that identify this new model. It combines unique characteristics with a particularly compact layout very low above deck, Maximum sail luff length and center of gravity benefit from these features.

through CNC machines. We start from "solid" blocks of material to guarantee quality, reliability, robustness and functionality. The shapes and construction of the stowing drum have been studied and tested in the most severe conditions during ocean races around the world. Like all Bamar products, the unit is machined from certified noble metals

10

۵

E

7 (857)

hydraulic foresail furler

Bamar "GFI" series: hydraulic systems to furl and reef sails. A combination of innovative technology and experience gained while working with prestigious boat yards.

These furlers offer and grant high performances and long duration, since they are designed and manufactured from high quality materials by means of CNC machines.

Mechanisms that require very low maintenance, with vanguard transmission systems. The use of high quality industrial products, bearings, gears, and endless screw, create a smooth and silent reduction gear with automatic stop.

worm screw reduction gear is an irreversible mechanism which absorbs the torque created by the sail area without passing it onto the hydraulic motor. The high torque output is granted by the use of orbital hydraulic motors. The

The GFI series is equipped with a stay tensioning turnbuckle. Standard bodies are made from black hardcote anodized aluminium alloy.

								2
	80	70	50 C	35 - <mark>35 C</mark>	25 - 2 <mark>5 C</mark>	16 - 1 <mark>6 C</mark>	12 - 12 C	Model
			240	227	197	177	148	ØA
		•	custom	115	88	50	40	mm 👦
			custom	46	35	29	29	mm c
7 30 31		•	300	150	150	100	100	m D
			custom	35 - 44	31,5 - 35	25 - 28,5	15,6 - 25	ØE
		•	1324	729 - 984	621 - 884	558 - 760	492 - 680	₩ F
			210	150	150	100	100	mm ه

13

BMG185-S9,5-S10

EFT

Indextary wire Ø mm 14 26 32 uivalent in # rod -48 -76/-91 -115/-15 uivalent in # rod 15,6/25 25/34,6 custor ievis pin Ø mm 15,6/25 BMG-60 - 70 - 80 BMG-90 ievis pin Ø mm 15,6/25 BMG-60 - 70 - 80 BMG-90 ievis pin Ø mm 15,6/25 BMG-60 - 70 - 80 BMG-90 ievis pin Ø mm 15,6/25 20 65 - 95 120 - 19 ial area (m² 150%) 100 220 310 310	Model 1 2.2C 3-3C
32 -115/-150 custom BMG90 - 110 120 - 195 310	

and

Bamar Sunny is a new product born from the experience acquired in the marine industry and developed for the civil sector to be used to furl removable / roll-up shades.

Sunny consists of a manual drum and a halyard swivel. The system is designed to be matched and completed with a NO TORSION stay and awning / shade. Such stay transmits the torque exerted by the drum. You manually control the endless line to furl the drum, which allows the "sal" shade to be rolled up.

The system is easy to install and allows you to cover large outdoor areas, leaving ample creative and architectural space to obtain the best result with great ease of installation and use.

18	12 Model	13	14	Б Воа	16	17	18 o	19	20	21	22	Available with tack adjustment kit (cumingtam). Available in the "C" version with integrated bydraulic stay tensioner.	Maximum performance, high furling speed and torque, easy installation, very low maintenan weight and size, improve comfort and safety on-board.	Flange, spherical fulcrum, and all components above deck are made of polished 316 stainles gear box (electric, hydraulic or manual version) and stay tensioning cylinder (optional) fitted are made in black hardcote anodized high tensile aluminium alloy. All this to guarantee dura	Furthermore, this furler has the highest versatility. In fact, under the same structural part see deck, it may accommodate either a line stowing drum, in the newly conceived manual versic the electric motor body, or the hydraulic motor, even as an upgrade to the manual alternative the electric motor body.	uesigned for a structural intesneeck installation, it may be equiliple to with an integrateration tensioning cytinder, tack adjustment kit (Cunningham) and fitting for the od connection (on structural decks). Therefore, no more compromises, even on sailing yachts with stay sizes #2 Same operating technology and construction quality of systems designed for the largest sup	special self-aligning spherical fulcrum.	Suitable for either rod stays up to # 40, or wire up to Ø14 mm. This line of foresail furlers mak	"flush-deck" manual foresail furlers for fixed s	GFUM	(B28)		
							and a second						ce, reduced	s steel. While below deck bility.	ured on n, otherwise e.	non- non- 2, # 30, #40. eryachts.		es use of a	tays				
					Max stay length (suggested) m	Weight kg	Foil type	Max forestay in # rod	Model) And a F		T					<i>α</i> 1 α		
											Model 8										5° - - 8,5°		

(B28)

Mounter levels (concentral) as	Weight kg	Foil type	Max forestay in # rod	Model
	29	BMG50R-52	-22 - 30-40	œ
	50 - 60	BMG52	-40 -48	12 - 12 C
2	75 - 88	BMG60-70-80	-60 -76	16 - 16 C
5	130 - 140	BMG80-90-110	-91 -115	25 - 25 C
5	167 - 200	BMG90-110	-150 -170	35 - 35 C
3	300 - 350	BMG110-125	-260 -320	50 - 50 C

2

9

Mar up and

ØA	mm B	m o	mm D	m m	F Manual tumbuckle stroke mm	
105	210	100	225	175	140	12°
148	265 - 459	100	300	210	190	15°
177	270-531	100	300	240	190	11,25°
197	329	150	365	280	240	11,25°
227	360	150	396	324	250	11,25°

S	
<u> </u>	

 \mathbf{c} 2

GFSI CTS^(B74)

"flush-deck" hydraulic foresail furler for torsional stays

The new GFSI CTS series represents the natural evolution of the standard "flush deck" GFSI furlers, which only involved the use of non-torsional structural stays with carbon or aluminum furling foils.

It has been designed to be used with structural torsional stays, which the sail is directly furled on. Therefore, this solution allows a reduction in weight.

The stay can be tensioned in real time thanks to the integrated hydraulic cylinder (custom strokes pressure and position sensors available upon request).

The sail tack can also be adjusted in real time by means of a sliding floating tack (cunningham) driven by a hydraulic cylinder installed below deck (optional item available on demand).

Adequate speed and furling torque are guaranteed by the hydraulic motor integrated in the furling unit (management through standard hydraulic plant on board).

Flange body and all components exposed on deck are made of polished stainless steel. Whereas, gear box body and stay tensioning cylinder are made of black hardcote anodised high mechanical strength aluminium alloy.

y Tensioning CyL W.L.t 10 - 13 20 - 23 30 - 33 40 - 43	Model 10 20 30 40	40	30 160-170 320-330 200 (350) 400-430 300-320	20 132 263 150 (300) 338 252	10 132 263 150 300 240
- 33 40 - 43	40		10 - 430 300 - 320	338 252	300 240
50 - 53		11,25°	11,25°	11,25°	11,25°

24					+ Manufactured with polished special + troombines three different functions in one steel alloys.	Blade, Jib, Staysail, etc an easy and quick use of the sail. You just have to hoist the stay with the sail furled around it by using its halyard; correctly lock the halyard; proceed by tensioning the stay depending on conditions; then unfurl the sail.	The system allows for: The use of any type of stay, both flaxible removable ones, and structural torsional ones (not included in the supply). a simple and fast replacement of sails, thanks to both its shape and quick release pins (supplied upon demand). stay/ sail tension adjustment thanks to the integrated hydraulic cylinder. furling and untrining any type of sail, such as Coole Zero. Drifter, Genoa.	They may be manufactured with either direct motor "D" in line with the stay, or with motor parallel to the stay "P" to keep even smaller overall dimensions.	Furling units with self-aligning spherical fulcrum, designed for a "structural" fush-deck installation, are also available with integrated stay tensioning collider for the removable stay	"finch darly hydraulia or alactric furlar with cylinder for remov
Max Stay Working Load t	Model	SITJOCD 131 SITZOCD 155 0 SIT3OCD 190 92 SIT40CD 210 100 SIT50CD 230 115								OVAL FLANGE WIT
	SIT 10 CD/P	11111 11111 1111		T Ton				tot		t DIRECT IN LINE
	SIT 20 CD/P	400 260 500 190 400 220 450 260 500 360				 О п				ROUND FLANGE WITH I MOTOR "
	SIT 30 CD/P	300 210 300 240 365 250 396 324 520 450	T				+ o +	0)PECT IN LINE
	SIT 40 CD/P	1911 195 228 230-240 290-315 390-435	ØI							ROUND FLANGE WI
⁵⁰ 25	SIT 50 CD/P	IIIII IIIII 583 18 724 26 740-780 34 800-640 40 910-980 45								PP 9°

A. Special section foil. It allows foils and connectors become a monolithic piece.
B. "Anti-rotation" key, integrated in the foil.
B. Expanding connector made by three elements.
D. Flush-mounted screws that allow for the perfect connection between connector and foil (the screws do not take torque

E. Delrin[®] bushes embracing the stay. load).

STANDARD FOIL

0

BMG 52 BMG 60 BMG 70 BMG 80 BMG 90 BMG 110 BMG 125 FOIL WITH EXPANDING OPENABLE CONNECTOR

			π	1
			~	
			1/10-	
		11		
		\int		
		2/1		
			α	

		Standa					oil with expa	nding opena	ble connecto		
	30 T	30 R	40 R	50 R	52	60	70	80	90	110	125
Ø (max) mm	8	8	12	14	14	16 - 19	22	26	26	32	1
# (max)	-10	-10/-12	-22	-30	-48	-48/-60	-76*	-91	-91 (-115*)	-170	-320
m	30	23	32	38	43	50	60	70	80	100	114
m	30	30	40	50	52	60	70	80	90	110	125,5
	23	16	23	30	29	30	40	52	54	74	
0 mm	6	7	9	9	6	œ	œ	œ	œ	œ	
	3,5	3,5	4	ω	ω	3,5	3,5	3,5	ω	ω	4,5
ilo intermedio mm	3000	1500	1500	1500	2980	2980	2980	2980	2980	3000	3000
ht kg/m		0,66	0,92	1,32	1,77	2,44	2,77	3,03	4,02	5,6	7,28

"OPEN" high load halyard swivel (B80)

The swivel is machined from aluminium alloy treated with hardcote anodizing, thus allowing for a high protection from wear and atmospheric agents.

The internal part touching the foils is coated with a plastic material that grants its smooth sliding along the foils, and protects it from localized wear when the sail is working.

The innovative design allows for an easy and quick inspection of the internal ball bearings without taking the swivel off from the foils. The high load resistance of the halyard swivel is granted by Torlon[®] ball bearing races.

These give an extremely advantageous ratio between weight and working

The result is a positive gain in weight.

load.

Model Ø A mm B mm		40 R 78 92,8	99 88 50 R	52 104 152	60 118 152	70 140 173	80 150	90 184 250	110 212 290	125 222 331	160 284 416	
ØAmm		78	8	104	118		150	184		222	284	
Bmm	86	92,8	99	152	152	173	173	250	290	331	416	
Cmm		107	113	176	178	204	206	282	321	374	469	
D mm		53	59	59	66	75	82	104	118	123	163	
Peso kg		0,6	0,9	2,1	2,9	ы	5,3	6,6	15,8	19,1	40,9	
Working Load (max) t		0,9	1,5	2,9	4,2			ω			24	

BMG 125 - BMG 125 HR - BMG 160 LOOPS ONLY

STAN DARD SWIVEL BMG 30 R - BMG 40 R - BMG 50 R SHACKLES ONLY

HIGH LOAD HALYARD SWIVEL BMG 52 - BMG 60 - BMG 70 - BMG 80 BMG 90 - BMG 110

30 Model	σ Φ	8 01	14	16 Boa	20 18 10	22	20 25 E	28 750	30	32	34	36	38			+ Easy endless line loading. You do not + Made of Ergal aluminium alloy an have to take the drum apart.	Consequently, drum and halyard swivel may as well be used to furl CODE O-type sails (sails hoisted on anti-torsion stay), whereas the special stay totally integrates the furling system for free flying sails (Gennakers) which Bamar ROLLGEN "patent".	Differently from the previous model, in the new RLG EVO, the tack swivel (fundamental element when furling free flying sails) is independent from drum. In fact, it is now integral part of the special ROLLGEN stay.	New furling system for Gennakers (sails with free flying luff), an evolution of the well-known and patented ROLLGEN system. This new developmen is characterized by both higher performances in terms of working load and smoothness in movement, and weight decrease by coughly 60%, such aracteristics have been obtained thanks to the use of materials such as Ergal aluminium alloy and 17-4PH steel.
											0		語の			Ind 17-4PH schinless	his	1 hthe	2 C
	Working load kg	kg Drum	Weight Halyard swivel	Max sail area (m² approx)	Max stay length (m)	Stay Ø mm	Drum Ømm	Model		35	25R	20 عد	01	80	Model		(
	2000			95	15		110	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		22 1	18	12	10	8					
	3000			150 / 170	std 17/3K 20		146	10			78 136	60 <u>113</u>	48 89	45 78	or B C C				
	5000			180/210	std 22/3K27		210	20		299	260	210	146	110				- D	
	8000			•	•		260	25			150	127	102	91					
	10000			•			260	25R			21 3	18 21	14	13	mm F		— m — — —		
ω	15000							35				9,5 		5	3 0				

7 G Τ / (C11) - (C60)

furling system for Gennakers

32 Model	TO TO X	2320(m)	5	75	27 20 3K	<section-header> ROBLEMENT OF CONTRACT OF CONTRACT</section-header>
	Ċ					
THE						
		Weight kg/m Norking load kg				
		0,25 900 kg	13	15		
		0,46	13	20	10 3 K	0 B 10 20 30 3K
					20	mm 33 48
ω						

Ū

It makes use of sealed high load bearings.

Reduced overall dimensions. It allows you keep the sail tack very low on deck.

	grit Kg					
VL kg		Halyard swivel	ax stowage m	Ømm	imm	
5000		0,88	13	210		
8000		1,25	17	260	16	
10000		1,42	24	240	18	
15000		3,10	•	300	22	

0	0	0(,		/		
Max WL kg	Drum	Halyard swivel	Ø 6 mm line max stowage m	Drum Ø mm			
5000			13	210			
8000		1,25	17	260	16	25	
			24	240			

	Model			25	
			Boat length up	pr (m)	
		1			0
0	0	5(C	1	0
	0		X		3

20

17

23 26 29

14 - 10

32 щ 38

34

œ ≓

Weight kg

Breaking Load kg

Special block to be used in order to split the backstay. The stainless steel pulley has a specially shaped race that is compatible with multi-strand steel wires, thus ensuring long duration.

s.s. standing wire pulley

Backstay Block

High load sliding bush and s.s. ball bearings

They may be manufactured in polished AISI 316 s.s. upon demand.

Made to complete head and tack angles to perfectly match EVO drums and halyard swivels.

connect the sail angle by means of straps. They are made in hardcote anodized aluminium with shapes and slots fit to

Boards⁽¹⁹⁰⁾

46

surface treatments to reduce modern ropes friction

They are made in hardcote anodized aluminium alloy undergoing dedicated

Special "sliding" rings designed to match onboard lines and complete

Low friction rings

manoeuvres

BWSE (C40)

electric furler for bowsprit

polished. resistance to marine conditions. Parts that are exposed on deck are mirror reduced overall dimensions, thus improving comfort and safety onboard. Body and fork parts are made in 316 stainless steel in order to ensure the best specifications, such as reduced weight, easy installation, low maintenance, Bamar presents this new line of electric Code Furlers that guarantee unique intended to be used on a bowsprit, it may be easily fitted below deck. positioned on the extreme bow. Its high speed and sail furling torque make It is to be used on sailing yachts looking for performance with the sail dimensions possible and allow for an easy installation on any bowsprit. the furling operation easier and faster. Though the system was originally The BWSE furler has been designed in order to have the smallest overall

Combined with the special RollGen stay with tack swivel connection, these furlers allow you furl sails with free luff, such as the Gennaker.

hydraulic furler for bowsprit

It is to be used on sailing yachts looking for performance with the sail positioned on the extreme bow. Its high speed and sail furling torque make polished. Body and fork parts are made in 316 stainless steel in order to ensure the best resistance to marine conditions. Parts that are exposed on deck are mirror Bamar presents this new line of hydraulic Code Furlers that guarantee unique specifications, such as reduced weight, easy installation, low maintenance, intended to be used on a bowsprit, it may be easily fitted below deck. the furling operation easier and faster. Though the system was originally reduced overall dimensions, thus improving comfort and safety onboard. dimensions possible and allow for an easy installation on any bowsprit. The BWSI furler has been designed in order to have the smallest overall

Combined with the special RollGen stay with tack swivel connection, these furlers allow you furl sails with free luff, such as the Gennaker.

T				
BWSE 20	BWSE 10	BWSE 5	Model	
120 - 140	100	85	mm	ØA
	348	373	mm	œ

Max Stay Working Load t	Weight kg	Speed max rpm	Quick Release Pin Ø mm	Model
σ	18		12	BWSE 5
		50 - 100	18	BWSE 10
20	50 - 60		26	BWSE 20

	Max Stay V	Speed	Quick Rele	z	PI 20 A	PI 10 A	PI 20 D	PI 10 D	Model	
	orking Load t		ase Pin Ø mm	odel		188	411	301	mm A	
					175 ± 225	147	363	259	mm B	E
			18	PI 10 D/A		144	•	•	n c	
						218	•	•	n n	
						60	•	•	mm	
						30	60	40	mm F	
			26	PI 20 D/A		120	128	120	mm	
5						88	95	88	mm	

Max Stay Working Load t	Speed max rpm	Quick Release Pin Ø mm	Model
10	50-	18	PE 10 A
	100	26	PE 20 A

PE 20 A	PE 10 A	Model
250 ± 350	188	mm A
175 ± 225	147	≣ ¤
250 ± 350	154	n o
250 ± 450	232	n ∎ D
105 ± 120	94	ØE mm
40	30	B ⊤
160 ± 170	120	mm ØG
95	88	m Ø H

stainless steel in order to ensure the best resistance to marine conditions. Parts that are exposed on deck are mirror polished. At present, the PE system

improving comfort and safety onboard. Body and fork parts are made in 316 easy installation, low maintenance, reduced overall dimensions, thus Code Furlers that guarantee unique specifications, such as reduced weight, performance, reliability and quality. Bamar presents this new line of electric more towards semiautomatic mechanisms which satisfy the demand for

can be supplied in two sizes that are identified by the stay max working load:

10t and 20t.

furlers allow you furl sails with free luff, such as the Gennaker.

Combined with the special RollGen stay with tack swivel connection, these

This furling Pad Eye has been developed combining technology and design. The evolution of technology in the sailing world grows more and

electric furling pad eye

U

- (C35)

hydraulic furling pad eye

This furling Pad Eye has been developed combining technology and design. The evolution of technology in the sailing world grows more and more towards semiautomatic mechanisms which satisfy the demand for

specifications, such as reduced weight, easy installation, low maintenance, performance, reliability and quality. Bamar presents this new line of hydraulic Code Furlers that guarantee unique

Body and fork parts are made in 316 stainless steel in order to ensure the best resistance to marine conditions. Parts that are exposed on deck are mirror polished reduced overall dimensions, thus improving comfort and safety onboard.

the stay max working load: 10t and 20t. At present, the PI system can be supplied in two sizes that are identified by

Combined with the special RollGen stay with tack swivel connection, these furlers allow you furl sails with free luff, such as the Gennaker.

It may be manufactured with either orthogonal motor or direct motor in line with the stay.

Max Stay Working Load t	Weight kg	PinØ mm	Speed rpm	Model
6 - 8		19	41 @ 20 \/min.	
12	45	28	31 @ 20 l/min.	16
¹⁸⁻²⁰	8		33 @ 20 l/min.	25

A

1	1	1
16	12	Model
231	202	A mm max
685 - 720	615 - 650	mm B
29	26	m o
177	148	mm D

19

ed rpm #	40
se Pin Ø mm	

Ð

- Ø QUICK RELEASE PIN

The system is available in two different configurations: "RollGen", with the special stay; it allows you furl all common types of free flying asymmetric sails of standard construction.

RLG-CODE furlers are also available in the electric motorized version MEJ. The system is to be fitted either on a chain-plate on deck, or on a bowsprit.

electric furler

"CODE" version (stay not supplied), instead, may be used to furl sails, such as Code Os, Drifters, etc., with luff integral to the stay.

RLG-CODE furlers are also available in the hydraulic motorized version GFI. The system is to be fitted either on a chain-plate on deck, or on a bowsprit.

The system is available in two different configurations: "RollGen", with the special stay; it allows you furt all common types of free flying asymmetric sails of standard construction.

"CODE" version (stay not supplied), instead, may be used to furl sails, such as Code Os, Drifters, etc., with luff integral to the stay.

Hydraulic cylinder (E20) - (E21) - (E22)

Bamar standard cylinders are manufactured with high quality materials. Rods are made from polished stainless steel type AISI 316. Tube, fork and cap are all machined from hardcote anodized alu minium. Upon demand we may supply special lengths and custom cylinders for any application.

Cylinders are single acting and are equipped with an inert gas pressure rod release. This pressure is charged through the "pneumatic" valve located on the cylinder body, opposite to the rod. Gas pressure should be regulated depending on the release speed you wish.

double acting function (push-pull). Push pressure is charged at 100 psi (7.0 bar) approximately. Max pull pressure 345 bar (5000 pSI). Upon demand, all cylinders may be manufactured with

Cylinder accessories

Bamar offers a wide range of cylinder terminals, for many different uses:
stainless steel adjustable fork- it allows a minimum length adjustment
eye-fork toggle - it is used on the lower part of the cylinder in order to prevent lateral loads.

Upon demand, we may supply fork-fork toggles and eye terminals.

Rop +10 -10 -10 -12 -12 -12 -12 -12 -12 -17	2X19 Wree mm 7 7 7 8 8 8 8 8 8 10 10	Working load kg 2.749 2.749 2.749 2.749 3.508 3.508 3.508 3.508 4.696	Body mm 6 60 60 65 65	Thread in 1/2" - 20 UNF 1/2" - 20 UNF	All Closed mm 5.05 6.20 5.45 665 9.30 5.50 5.50 665	All Open mm 725 950 1.300 730 1.015 1.530 780 780 1.040	Stroke mm 220 330 500 245 350 600 2350 350	Stroke Stee (**) F F S S S	GAP mm 13 13 16 16 16 16	15 15 15 15 15 15 15 15 15 15 15 15 15 1
-12	8	3.508	65 60	1/2" - 20 UNF 5/8" - 18 UNF	930	1.530 780	600 230	S II		
-17	10	4.696	65	5/8" - 18 UNF	690	1.040	350	-		
-17	10	4.696	65	5/8" - 18 UNF	1.110	1.860	750	٦	16	
-22	12	5.566	70	3/4"-16 UNF	610	840	230	S	19	
-22	12	5.566	70	3/4"-16 UNF	760	1.120	360	r.	19	
-22	12	5.566	70	3/4"-16 UNF	1.280	2.150	870	П	19	
-30	14	9.939	85	7/8" -14 UNF	700	950	250	S	22	
-30	14	9.939	85	7/8" -14 UNF	860	1.255	395	-	22	
-30	14	9.939	85	7/8" -14 UNF	1.465	2.450	985	т	22	
-40	16	15.185	100	1"-12 UNF	760	1.030	270	S	26	
-40	16	15.185	100	1"-12 UNF	068	1.365	420	-	26	
-40	16	15.185	100	1"-12 UNF	1.645	2.750	1105	п	26	
-60	22	18.981	120	1 1/4" -12 UNF	905	1.185	280	s	32	
-60	22	18.981	120	1 1/4" -12 UNF	1.110	1.565	455	-	32	
-90	26	24.227	140	1 1/4" -12 UNF	1.000	1.325	325	s	38	
-90	26	24.227	140	1 1/4" -12 UNF	1.200	1.730	530	F	38	
-150	32	41.069	180	1 1/2" - 12 UNF	1.091	1.520	375	s	45	
		41.069		1 1/2" - 12 UNF	1.316	1.975	600	-		

Hydraulic boom vang

-195	-150	-110	-90	-60	-40	-30	-22	-17	Model #
220				120	110	90	75		External Ø mm
70	60	50	50	40	35	30	30	25	Cylinder rod Ømm
S	40	35	32	25	22	19	16	16	Pin Ø mm
g	40	35	32	25	22	19	16	16	GAP
500	500	500	500	450	400	350	350	300	Stroke mm
47845	30320	24340	16760	14780	11810	9200	4715	3100	Cylinder max pull (1) (3) kg
0066	4600	3600	2700	2200	1740	1300	830	550	Gas push (2) kg
4700				3000	2700	2500	2300	2000	Length max PCLC mm
12000	0006	6000	5000	3700	2600	2000	1500	1000	Max axial compression load (Buckling) kg
170	125	100	75	60	40	30	20	15	Indicati weight

stroke with gas pre-charged 500 PSI \approx 35

It the gas pressure of the vang. following the instructions in the instruction manual, e to carry out this adjustment, may cause serious damage to enag, mast and boom structures, ne duty and responsibility of the leggers installing the vang to check the actual pressure require

BPC-TRIM (EOZ)

hydraulic cylinder with tackle

It is a tackle system operated by a "push-pull" hydraulic cylinder. It has been designed mainly for the management of sheets (mainsail, genoa), but it may also be used for other running rigging (runner). The device is made up by a 4.1 tackle allowing to stow a quantity of line that is four times longer than the cylinder stroke.

The anchoring method is simple and fast: two pins, one holding the load, the other one supporting the system, that are positioned on the two extremities of the self-holding structure. This spares both boom maker and boat yard the construction of a complex structure.

BPC-TRIM may be housed either inside the boom or in a dedicated technical compartment. The system is controlled by an electric hydraulic power-pack to be customized. All BPC-TRIM cylinders are also available in the "flat" version.

EXAMPLE OF MAINSHEET APPLICATION

B - under the boards with sheet passage from mast foot

D - below deck with sheet passage from mast foot

58 8

C - under the boards with sheet passage from deck

300	250	200	150	120	100	Model
	24	22	18	14	12	Line max Ø A mm
300 × 300	250 x 250	200 × 200	150 × 150	120 × 120	100 × 100	Tackle box dimensions B x C mm
	225	180	140	100	06	Piston external Ø D mm
5000	4500	3800	2500	2500	2000	Piston Max stroke E mm
1 1/4"	1"	1"	3/4"	$1/2^{n}$	3/8"	Oil intake thread F
	45	45	35	30	25	Anchoring pins Ø G mm

cylinder with spherical fulcrum

0

0

Ð

0

Ð

BSCP (EO3)

BSCT (E04)

hydraulic stay tensioning cylinder with spherical fulcrum

An innovative evolution of the "classical" hydraulic stay tensioning cylinder. It makes use of a special spherical connection on deck which allows for the correct alignment of the stay. Moreover, the system keeps the cylinder body water-light below deck, thus reducing the overall dimensions of the parts exposed on deck. Mainly indicated for inner forestays and backstays.

These cylinders are supplied with inert pressure rod release. Such pressure is charged with a pneumatic valve placed on the cylinder body at the extremity opposite to the rod to be adjusted. Pressure depends on the release speed required.

We may supply custom lengths and strokes on demand.

	26	19	16	14	12	1x19 Wire Ø mm
180	140 - 150	120	105	85	70	ØAmm
44,5	38	31,5	26	22,2	19	ØBmm
	•	580	474	387	375	C mm
1206	•	1067	972	709	731	Dmm
204	•	151	74	92	78	Emm
	230 - 250	211	209	179	160	ØFmm

pressure 5000 PSI (roughly 345 bar)

Upon request we may supply custom lengths and stroke

-60	-40	Rod #
18.861	15.185	Working Load max kg
 880	832	All Closed A mm
1080	1032	All Open B mm
	200	Stroke C mm
	25	D mm
32	26	ØE mm
32	26	Fmm
31,8	25,4	ØGmm
115	100	ØHmm
778	733	Ī

0	#
6643	Max push@ 345 bar kg
35	ØAmm
960	Length all Open B mm
380	Cylinder stroke C mm
580	Length all Closed D mm
410	Emm
550	Fmm
30	Gmm
M8	т
70	Ølmm

A new line of stay tensioning cylinders supplied with a mechanical lock. They allow for the hydraulic pressure release, while keeping the stay under tension mechanically: fundamental for maximum safety when sailing for long

distances. Useful for the control of forestays during races, thanks to their simple and quick adjustment system with ring nut.

The cylinders are supplied with inert gas pressure rod release. This pressure is charged through the "pneumatic" valve located on the cylinder body,

Gas pressure should be regulated depending on the release speed you wish. opposite to the rod.

Pressure is charged at 100 psi (7.0 bar) approximately.

Upon request we may manufacture fork-shaped lower fittings.

BCPO (EUT)

hydraulic outhaul cylinder

Single acting pushing cylinders allowing for the immediate control of the mainsall base. Such system is more efficient and smaller than the classical pulling cylinder to be housed inside the boom with a pullely fitted abaft. The cylinder body is made of black hard-cote anodized aluminium.

to prevent it from bending when pushing. The rod is made of polished stainless steel and has a bigger diameter in order

The cylinder will have to work with the car sliding on a track.

Ö STANDARD Ö SMALL

P

106

0

Ö

66

b

2

It is supplied with an internal steel spring that pushes the boom up. The range is made up by 5 models in order to be fitted on boats from 30' to 62'.

Its length may be customized onboard when installing it.

It is made of two telescopic tubes equipped with special connecting terminals with integrated pulleys that allow for a compact line tackle. The line can be either directed to the cockpit or locked onto the kicker itself by means of an extra tackle with cleat. This kicker is manufactured in either silver or black anodized aluminum alloy.

terminal. The spring allows you to adjust the kicker thrust by rotating the upper tube/

14

ø

BTM (FIO)

mechanical stay adjuster

BTM winch handle stay tensioners are available in several sizes. They are made for either 1x19 wire stays from Ø 8 to 22 mm or rod equivalent. The mechanism can be operated by means of a standard winch handle

thanks to an octagonal clutch. BTM stay tensioners body is manufactured in black HARDCOTE anodized

whereas studs and forks are made in s.s.. Double extension studs allow for a aluminum;

longer stroke compared to comparable products.

operation. tensioners or standing rigging that need to be "running" with a simple forestay Furthermore, we may supply a range of quick release pins for either inner

It can be operated thanks to an octagonal clutch (standard winch handle)

handwheel mechanical stay adjuster

Handwheel stay adjusters are equipped with two foldable arms. They are available in two sizes, for size 5 and 6 mm stays.

Thanks to self-lubricating bushings, we manage to reduce to a minimum the friction that would be created by sliding the endless screw on the trapezoidal thread, which allows high axial loads.

19	16	14M	14	12	8/10	Model
110	110	110	68	68	68	mm
1445	1445	1445	1168	948	898	B Max mm
939	939	939	768	648	598	B Min mm
88	70	47	47	33	27	mm c
29	26	22	22	20	16	mm D
506	506	506	400	300	300	Stroke mm

;	1				;
22	30	30	40	48	60
19	22	22	25	28	35
21	14	14	16	19	22
	8,5		12,5	16	20,4
	22 19 12 7	22 30 19 22 12 14 7 8,5	22 30 30 19 22 22 12 14 14 7 8,5 9,6	22 30 30 40 19 22 22 28 12 14 14 16 7 85 96 12.5	22 30 30 40 48 19 22 22 25 28 12 14 14 16 19 7 8.5 9.6 12.5 16

71

72	Motorization Model	Sail g/mq (indicative)	Car breaking load kg	Weight kg/m	Foil length m (indicative)	Internal Diameter mm	P max m	E max m*		RGE Foil	Model	-				Another important mechanical or the halyard to the sail, it is made CNC machines, and rotates on ba grant its tightness. The manual external mainsail sail stowing foils furling foils and connectors halyard switch furling foils and connectors halyard switch terminal fitting gooseneck connecting the boo worm screw" coll drive with fi norming on ball bearings, three foot
	Manual	≤ 281	600	1,72	2,5	70	13	3,2*	(\bigcirc	BATO					or silver anodised alum or silver anodised alum III bearings protected by furler kit includes: furler he mast urling line terminals, screws and f blocks to take the line
	80 / Manual	≤ 323	1.000	2,7	2,5	80	15,5	4,2*	(\sum_{i}	BASS	3				inium machined with inium machined with y seals and ORs that fixing plates, cars down to the mast
	80 / Manual	≤ 365	1.600	ω, υ	2,5/3	90	18	5,7*	Ì	Ĵ		5				
	80 / Manual	≤ 398	3.000	4,18	2,5	105	20,5	6,7*	Ì	Ś		,		-	Allalas	
	130	depending on measur	depending on measur	6,1	. ω	150	30	10,0*	7	Ĵ	 	1		0	Ginter	-
Coil drive kg	External foil kg/m 1,72 2,7	Innerfoil kg/m 0,62 0,62	Halyard swivel kg 1 1,5	t (inner foil type) BMG 30T BMG 30	ØHmm 68 77	Gmm 135 150	Fmm 505 575	E mm 995 1065	ØD mm 8 8	Cmm 10 10	ØB mm 70 80	Ø A mm 74 84	Max P m 13 15,5	MaxE*m 3.2 4.2	Model BA70 BA80	_
6 G	3,3	0,62	2	T BMG 30T	88	150	610	1095	10	13	90	94	18	5,7	c	
12	4,18	0,62	ω	BMG 30T	103	160	765	1.255	10	ti	105	110	20,5	6,7	D	
¹⁶ 73	6,1	1,77	4,5	BMG 52			1000	1.500	12		150	158			m	

It is characterized by the famous "worm screw" coil drive that grants a correct stowage of the furling line avoiding all possible overlaps while furling. The coil drive is made of silver anodized aluminium machined with CNC

manual external mainsail furler

RGEM (A10)

machines, and integrates a ball bearing bush protected by seals and ORs.

Motorization Model	Sail g/mq (indicative)	Car breaking load kg	Weight kg/m	Foil length m (indicative)	Internal Diameter mm	P max m	E max m*	RGE Foil	Model	
Manual	≤ 281	600	1,72	2,5	70	13	3,2*	\bigcirc	BA70	
80 / Manu al	≤ 323	1.000	2,7	2,5	80	15,5	4,2*	\bigcirc	BA80	
80 / Manual	≤ 365	1.600	3,3	2,5/3	90	18	5,7*	Ç	C	
80 / Manual	≤ 398	3.000	4,18	2,5	105	20,5	6,7*	$\sum_{i=1}^{n}$	D	
	depen	depen								

9
뽘.
×
Ξ.
ര്
×.
ă.
ನ
÷
×
a.
Ð
a.
õ
ਣ
×
a.
÷
F
the s
the sai
the sail-
the sail-m
the sail-ma
the sail-mak
the sail-make
the sail-maker
the sail-maker di
the sail-maker dep
the sail-maker depe
the sail-maker deper
the sail-maker depend
the sail-maker dependir
the sail-maker depending
the sail-maker depending d
the sail-maker depending or
the sail-maker depending on d
the sail-maker depending on cu
the sail-maker depending on cut
the sail-maker depending on cut, d
the sail-maker depending on cut, cli
the sail-maker depending on cut, clot
the sail-maker depending on cut, cloth
the sail-maker depending on cut, cloth a
the sail-maker depending on cut, cloth an
the sail-maker depending on cut, cloth and
the sail-maker depending on cut, cloth and t
the sail-maker depending on cut, cloth and th
the sail-maker depending on cut, cloth and thic
the sail-maker depending on cut, cloth and thick
the sail-maker depending on cut, cloth and thickn
the sail-maker depending on cut, cloth and thickne
the sail-maker depending on cut, cloth and thickness
the sail-maker depending on cut, cloth and thickness c
the sail-maker depending on cut, cloth and thickness of
the sail-maker depending on cut, cloth and thickness of t
the sail-maker depending on cut, cloth and thickness of th
the sail-maker depending on cut, cloth and thickness of the
the sail-maker depending on cut, cloth and thickness of the sa
the sail-maker depending on cut, cloth and thickness of the sai

130	35	6,1	1,77	4,5	147	140	BMG 52	111	6500	20	150	157	30	10	
80	13	4,18	0,62	ω	103	160	BMG 30T	570	1045	13	105	110	20,5	6,7	
80	ц	3,3	0,62	2	88	150	BMG 30T	570	1045	13	90	94	18	5,7	
80	9,5	2,7	0,62	1,5	77	150	BMG 30T	570	1045	10	80	84	15,5	4,2	BA80
Motorization Model	Motorization kg	External foil kg/m	Inner foil kg/m	Halyard swivel kg	ØHmm		F (inner foil type)	Emm	D mm	Cmm	ØBmm	ØAmm	Max P m	Max E* m	Model

Motorization Model	Sail g/mq (indicative)	Car breaking load kg	Weight kg/m	Foil length m (indicative)	Internal Diameter mm	P max m	E max m*	RGE Foil	Model
Manual	≤ 281	600	1,72	2,5	70	13	3,2*	\bigcirc	BA70
80 / Manual	≤ 323	1.000	2,7	2,5	80	15,5	4,2*	\bigcirc	BA80
80 / Manual	≤ 365	1.600	3,3	2,5/3	90	18	5,7*	$\sum_{i=1}^{n}$	C
80 / Manual	≤ 398	3.000	4,18	2,5	105	20,5	6,7*	Ç	D
130	depending on measure	depending on measure	6,1	3	150	30	10,0*	<u> </u>	m

rtri	
> DYt	R
erny	
m niu	L
לא דו ל	
III Pr	(A12)

electric external mainsair initia

External electric mainsail furler to be fitted onto the existing mast. It is supplied with a motorization that replaces the classic manual "worm screw" coil drive. This solution allows you to reef, furl and unfurl the sail by simply pushing a button.

furls are the same as the ones used on the manual system. The motorization has a cylindrical shape and is available for either 12 or 24 Volts installations. Its consumption is extremely low, as we use permanent magnet motors with a high efficiency epicyclical transmission. Both the external foils that stow the sail and the internal ones on which the sail

Reefing is guaranteed by the integrated electromagnetic brake. Moreover, the motorization is supplied with a manual emergency clutch to be used with a standard winch handle, should the electric system fail. If required, we may motorize existing furling devices keeping original furling foils and halyard swivel.

- The external electric mainsail furler kit includes: sail stowing foils furling foils and connectors halyard swivel

terminal fitting
goose-neck connecting the boom to the mast
electric motorization

running on ball bearings
5 m long electric cables

•

boom modification: track with terminals, screws and fixing plates, cars

screws and rivets

Purior anno 19		,	,	
ner foil kg/m	0,62	0,62	0,62	
oil drive kg	5	0	12	
Hmm	Wa	rming: the width of the sail exit on t	he mast must not exceed measure"	Ű,
made				

Coil drive kg	Inner foil kg/m	Halyard swivel kg	G (inner foil type)	ØFmm	Emm	Line Ø mm	ØDmm	Cmm	*Ø B min mm	ØAmm			Model
ъ	0,62	1,5	BMG 30T	11	150	14	8	577	100	85	15	ъ	80
6	0,62	2	BMG 30T	88	150	18	10	647	120	95	17,5	6	90
12	0,62	ω	BMG 30T	103	160	22	10	803	140	112	20	L L	110
18	1,77	2	BMG 52	104	140	26	12	830	150	130	25	œ	130

•

"worm screw" coil drive with furling line

The manual in-mast mainsail furler kit includes:
 furling foils and connectors
 terminal fitting
 halyard swivel

aluminium machined with CNC machines, and rotates on ball bearings protected by seals that grant its tightness.

Mainsail furling mechanism to be fitted inside mast foils with special section for vertical internal mainsail furler. It is characterized by the famous "worm screw" coll drive that grants a correct stowage of the sail furling line, avoiding all possible overlaps while furling. The coil drive is made of silver anodized aluminium, machined with CNC machines, and integrates a ball bearing bush protected by seals. Another important mechanical component is the halyard swivel that connects the halyard to the sail. It is made of silver anodized

manual in-mast mainsail furler

RGIM

(A20)

0

Model

8 - 10

9 - 13

12 - 16

15 - 20

electric in-mast mainsail furler

Main sail furling mechanism to be fitted inside mast foils with special section for vertical internal mainsail furler. It is supplied with a motorization that replaces the manual "worm screw" coil drive. This solution allows you to reef, furl and unfurl the mainsail by pushing as write. from sub-too coloit. If required, we may motorize existing furling masts keeping original furling foils and halyard swivel.

The electric in-mast mainsail furler kit includes: • furling foils and connectors • terminal fitting • halyard switel • electric motorization • anti-rotation bush

To be customized * Data expressed are indicative and need to be chec		Motorization kg	Foil kg/m 0	Halyard swivel kg	ØFmm	Emm	D (furting foil type) BM	Cmm 5	*Ø B min mm 110,	ØAmm	Max P m	Max E** m	Model
ked with the sail		9,5	,62	,5	77	.50	5 30T	70	···•06/	30	15	5	8
l-maker depending on the	Warning: the width of th	ц	0,62	2	88	150	BMG 30T	570	110/90***	80	17,5	6	8
cut, cloth and thickness of t		13	0,62	ω	103	160	BMG 30T	660	115/120***	011		7	110
he sail, and maximum work		35	1,77	2	104	140	BMG 52	780	197/140***	130	25	y	130
ing loads		55	2,44	2,5	118	165	BMG 60	875	200/170***	160	30	11	160

	Weight kg	Dmm	Cmm	Bmm	Amm	Indicative max sail area sqm	MOLLER	
	16	625	230	370	110	65	65	
	33	661	230	480	140	95	95	R
	65	n.d.	300 / 600	490 / 580	160	150	150	
	86	n.d.	300 / 1200	540/700	180	240	240	
	18	180	520 / 720	290	110	65	65	
	34	215	607/807	355	140	95	95	
	78	265	086	440	160	150	150	ΕĽ
0	108	350	1060 / 1220	520	180	240	240	

Model Cative max salt area sqm A mm	65 110	95 95 87	SI 150 160	240 240 180	65	95 95 140	BI 150 160	
Bmm	125	125	178	178	290	355	440	520
Cmm	2.30	230	300 / 600	300 / 1200	415	480	620	700
Dmm	520	533	n.d.	n.d.	180	215	265	340
Weight kg	12	25	52	80	15	26	65	

"combined" mainsail motorization and outhaul - RGEL (ASO) (A51)

L C

(A60)

900 40

(A61)

Such motorizations make use of a worm screw as reduction system and may be realized both in the electric and hydraulic version. Mainsail furders and outhauls may be installed both on furling masts, and on new or existing external retrofit mainsail systems. The range of mainsail furders and outhauls is composed by 4 + 4 models that may reef mainsails with a sail area between on outhors. 30 and 240 sq.m.

outhaul. "Comby system" is the system that combines mainsail motorization and

contemporaneous operation of the two motorizations. Everything controlled from the cockpit. It allows you to furl and unfurl the mainsail with the almost

Electric and Hydraulic Captive Winches with line front output (P31) - (P01)

5t and 9t Series

-12

A series of line stowing devices with line front output, for the control of sheets and halyards, for sailing yachts from 45' to over 150' Main characteristics of these Captive Winches are: Quality and technological innovation are the key points upon which Bamar products manufacturing process is based.

Simple and flexible installation. Reduced weight and overall dimensions thanks to the use of materials with high mechanical resistance and suitable for the use in marine environment

Safety

Mechanical control system preventing the sheet from slackening when easing away

Protection cowl.

Line always accompanied when furling in, thanks to the drum crests that guide the car movement

Car "stroke end" control device

Structural spacer bars

Saddle guiding studs Line guiding saddle Aluminium drum Slack sheet control device

Aluminium basement

Description

Captive winch anchoring screws

Hydraulic motorization

Electric motorization Aluminium side pillar

Saddle limit switch sensor

Protection cowl

All our Captive Winches are tested in our work shop on a test bench at maximum dynamic pull Aluminium treated with hardcote anodizing

1t and 2t Series

 \odot

(2

E

13	5	F	10	9	∞	7	6	б	4	ω	2	-	
Protection cowl	Saddle limit switch sensor	Captive winch anchoring screws	Manual emergency clutch	Electric or hydraulic motorization	Aluminium side pillar	Structural spacer bars	Slack sheet control stud	Line guiding saddle	Saddle guiding studs	Aluminium drum	Slack sheet control device	Aluminium basement	Description

(-)

(H)

E

Model

00

6

 \bigcirc

 $^{\circ}$

6

٦	E min.	n	œ	A	Model	
M8 x nº.14	1250	240	220	710	BCW 1 Medium mm	
M10 x n°.16	1300	290	270	750	BCW 2 Small mm	
M10 x n°.16	1300	290	270	850	BCW 2 Medium mm	

Model

General specs

Model		BCWE 1 Medium	BCWE 2 Small	BCWE 2 Medium	BCWH 1 Medium	BCWH 2 Small	BCWH 2 Medium
Dynamic pull max	ť	1	2	2	1	2	2
Static load max	t	2	4	4	2	4	4
Line Ø max	mm	10	12	12	10	12	12
Drum stowing capacity	з	24	25	30	24	25	30
Approx. Line speed *	m/min	15	15	15	18	18	18
Weight	kg	65	95	100	65	95	100
Electric motor power	Watt	1500	2000	2000			
Electri supply	<	24	24	24			
Pressure max	har				140 175	140 - 175	140 - 175

Upon demand we may supply bigger sizes with higher loads. *to be defined depending on client's requirements.

All hydraulic and electric captive winches may be equipped (upon specific request) with other motor/reduction gear configurations in order to reach

variable speeds up to 40-50 m/min. Technical specs and illustrations are indicative and not binding.

82

All hydraulic and electric winches may be equipped (upon specific request) with other motor/reduction gear configurations in order to reach variable speeds up to 40-50 m/min.

*to be defined depending on client's requirements.

Model		BCWE 5 Small	BCWE 5 Medium	BCWE 9 Small	BCWE 9 Medium	BCWH 5 Small	BCWH 5 Medium	BCWH 9 Small	BCWH 9 Medium
Dynamic pull max	4	4 - 5	4 - 5	8 - 9	6 - 8	4 - 5	4 - 5	8 - 9	6 - 8
Static load max	~	00	8	16 - 18	16 - 18	8 - 9	8-9	16 - 18	16 - 18
Line Ø max	mm	16	16	20	20	16	16	20	20
Drum stowing capacity	з	40	50	48	62	40	50	48	62
Approx. Line speed*	m/min	15	15	15	15	15-30-45	15-30-45	15-30-45	15-30-45
Weight	kg	275	290	390	410	275	290	390	410
Electric motor power	kw	6-8	6-8	8 - 13	8 - 13				
Electric supply	<	380 - 400	380 - 400	380 - 400	380 - 400				
Pressure max	bar					235-250	235-250	250-270	250-270

	× ×
è	S→
\	Red a
	ω 4

Electric and Hydraulic captive winches with line side output (P31) - (P01)

Quality and technological innovation are the key points upon which Bamar products manufacturing process is based.

A series of line stowing devices with line side output, for the control of sheets and halyards, for sailing yachts from 70° to 450° Main characteristics of this line of Captive Winches with pull loads ranging from 4,000, 8,000, 16,000, 24,000, to 34,000 kg: Flexible positioning, since the same BCW may be positioned with sheet exit either on the left or on the right hand side, and with horizontal sheave

Sheet tension controlled when "easing", thus preventing the sheet from slackening on the drum. integrated in the winch.

Materials used: polished stainless steel and hardcote anodized aluminium.

Safety: the BCW is protected by a protection cowl.

Stroke end protection for car/sheave sheet-in/ease.

The base-plate may be positioned on an inclined or vertical surface.

box (box with terminals for the connection of signals) to be linked to the client's monitoring system. All our Captive Winches are tested in our work shop on models, which require a 24 Volt electric supply. We use fixed speed motors (variable speed available on demand). BCW's are equipped with n. 2+2 stroke-end safety micro-switches. They are also supplied with an Electric sheet tension control device when easing, which prevents the sheet from slackening on that may be used by your sail monitoring system. BCW's are equipped with hydraulic fittings, and/or electric connectors, electric cables, electric junction the drum (standard supply). BCW's may mount a load cell to monitor the loads on the sheet (not included, only upon demand). This cell will release a signal Mechanisms may be either hydraulically or electrically motorized. For the electric version, voltage is 220-380V for the entire range, apart from BCW4 BCW's are fitted with belt drive. They are also equipped with high efficiency Epicyclic reduction gears

a test bench at maximum dynamic pull.

Sheet PAY OFF UNIT (not included)

Electrically and/or hydraulically driven sheave, used to help the transfer of line to the deck. The placement and installation of these sheaves is up to the shipyard that will have to install them onboard checking the best route for each line.

Lh horizontal line organiser housing for BCW Aluminium side pillar (Hardcote anodized) Aluminium side pillar (Hardcote anodized) Rh vertical pulley support hub for BCW Aluminium base (Hardcote anodized) Lh horizontal line organiser for BCW Car with vertical pulley support hub Hydraulic or electric motorization Carguiding worm screw (N. 2) Side protection cowls (N. 2) Lh vertical pulley for BCW Caranchoring track (N. 2) Belt, chain, or gear drive Side pillar spacing bars Drive protection cowl Description Line clamp S.s. drum

Upper protection cowl

	XX Large	X Large	Large	Medium	Small	Line Ø mm	BCW 16	Large	Medium	Small	Line Ø mm	BCW 4														
	93,0	80,0	67,0	53,0	40,0	20		54,0	40,0	25,0	10															
	85,0	73,0	61,0	49,0	37,0	22	Drum	45,0	33,0	21,0	12	Drum														
BC	78,0	67,0	56,0	45,0	34,0	24	n stowing	38	28	18	14	n stowin _į														
W 34	72,0	62,0	52,0	41,0	31,0	26	g capaci	°0	°,	°,		g capaci														
	69,0	59,0	49,0	39,0	29,0	28	ity m	33,0	24,0	15,0	16	ity m														
Dru	64,0	55,0	46,0	37,0	28,0	30		30,0*	22,0*	14,0*	18															
m stowing capacity	XX Large	X Large	Large	Medium	Small	Line Ø mm	BCW 24	Large	Medium	Small	Line Ø mm	BCW 8														
ity m	107,5	88,5	75,5	62,5	50,5	26	Drum st	51,0	38,0	26,0	16															
	99,5	82,5	70,5	58,5	46,5	28		45,0	34,0	23,0	18	Drum st														
	93,5	76,5	65,5	54,5	43,5	30	owing cap	40,0	30,0	20,0	20	owing cap														
	00	75	61	51	40	ω	apacity m	ipacity m	ipacity m	capacity r	capacity r	capacity r	capacity r	capacity n	capacity n	capacity n	capacity m	36,0	27,	18,	22	acity				
	7,5	,° "С	τŭ	Ψ	ΰ	2	з		0	0		В														

Our premises test bench (Forlì Italy)

Line Ø mm

в

32

34

36

Medium Large Small

48,0 60,0 72,0 84,0 102,0

44,0 56,0 67,0 78,0 95,0

42,0 53,0 63,0 74,0 90,0

40,0 50,0 60,0 70,0 86,0

38 37,0 47,0 57,0 67,0 81,0

X Large XX Large

Captive Winch Model

Small Medium Large X Large XX Large

850 1050 1250 4T

8T

16T

24T

34T

98

D U B >

Vertical pulley hub for RH BCW Horizontal pulley housing for RH BCW Vertical pulley hub for LH BCW Horizontal pulley housing for LH BCW

8 8

Horizontal pulley for RH BCW (included) Extra horizontal pulley (optional) Extra vertical pulley (optional)

Spacer

2 2 5 4

Horizontal pulley for LH BCW (included) Extra horizontal pulley (optional) Vertical pulley for RH BCW

Vertical pulley for LH BCW

Description

٢

0

¢

	mm	mm	mm	mm	mm	mm	mm	mm	mm
unungen.	220	56	395	450			1250	1050	850
	300	70	520	550			1420	1220	1020
<u></u>	400	77	620	680	2130	1930	1730	1530	1330
	500	80	725	820	2455	2155	1955	1755	1555
Lange Lang	550	85	825	920	2575	2275	2075	1875	1675

Drum Ø

Weight kg 200 - 300 400 - 500	Line speed* m/min. * *	Line Ø mm 10-18 16-24	Stowing drum Ø mm 220 300	Static load max t 5 10	Dynamic pull max t 4 8	Model BCW 4 BCW 8	
650 - 850 900 - 1200	•	20-32 26-34	400 500	20 30	16 24	BCW 16 BCW 24	
1300 - 1700		30-38	550	42	34	BCW 34	

4 Ca a ch cu a u P - cqu

All hydraulic and electric winches may be equipped (upon specific request) with other motor/reduction gear configurations in order to reach variable speeds up to 40-50 m/min

Test Bench Max 250T

One of the main targets of the company is to ensure complete and constant customer satisfaction, to be reached by continuous Quality improvement. In this context, the need to ensure that all products that are being manufactured are in compliance with the required specifications, led Bamar to the development of a quality management system that has been certified in accordance with the standards ISO 9001 / UNI EN ISO 9001 : 2008 (SGS).

Materials, design and production processes together contribute to maintain a high level of Bamar product quality: in the design phase, we proceed with the creation of a FEA model; then, once the production phase with CNC machines is completed, we first inspect the correspondence of the item made with the original design. Finally, after the final product has been assembled, we carry out tests on the test bench: we check product compliance, no-load operation and with maximum working load.

The entire production cycle, from design to manufacturing and assembly, to final bench tests, is carried out in Italy in our headquarters in Forli.

DEA Quality Check

DEA Quality Cr

1 63

GFSE test

For the purpose of the present General Tems and Conditions of Sale (hereinaster named "Conditions of Sale") the following definitions shall apply: -"Soluzioni Meccaniche": Soluzioni Meccaniche S.R.L.;

"Suppr": any company, body or exity purchains gible Product from Solutionite.cancient: "Product": It is goods munitive existentiation and solution becaming either Banar (and mark or other) "Product": The product munitive existentiation and existentiation becaming and and and or other or mit. "Product Device": Any proposal for the product form Product under region of a balance of the product and the solution by by face or emit. "Product Device": Any proposal for the product and an existentiation becaming the product and t

2) of the Acquisitions of Continuation of Oxfer The supply include the type of and services asspectified in either offer or confirmation of order to be carried out following the conditions defined therein. The provisions fixed in offers and confirmations of order not be hierarded as being insupply include the type of the order intel Minister of Acouments, the Buyer will there fore have confirmation of contex public between which asseemed as a which the provision of a contex public between the provision of a contex public between which as the order and confirmation of order and confirmation of order and confirmation of order and confirmation of order and the order of the order interview of the order interview of the order interview of the order of the order interview of t

3) Order Change or Cancellation, Changes to Specifications Should the Buyer demand for either changes, alterations or cancellation of ordens that have already been confirmed and accepted, any cost or expense incurred by Soluzioni Meccaniche until that date shall be reimbursed

Objectory Tem 20 and the offers or confirmations of order are to be intended as merely indicative and not binding for Soluzioni Meccaniche. Therefore, Contracts cannot be cancelled for such reason. The Boyer has to accept that no Delevery term stated on either offers or confirmations of order are to be intended as merely indicated and foreseen in the order.

5) Decuments
Once the supply has been fulfilled and the Buyer has settled the amount due, Soluzioni Meccanic he will supply either in paper form and/or as digital file via e-mail a basic instruction and mainten ance manual concerning the goods supplied

Fight: Bits, and Non-Combinity any non-conformity of the Product skilver of to the Byper as to the Bype and quantity indicated in the Offer/Order and/or Shipping documents must be notified to Solution Heccaniche in writing within seen (7) days from the date of delivery. Should be compliant text text work work in the delivered Products shall be considered consistent with the Products ordered by the Buyer and no further chain will be alwork.

If yourd
If yourd</p

is indexcas hyperity fights Souicain decasisky will assore main, unless otherwise agreed upon with the Buyer, the conner of all rights, whatsoever, about the projects and designs developed by its Technical Organizment. Therefore, any possible production by third Source deriving from such projects will have to be preventively authorized in written by Solurion Meccaniche. In case of fraudulent behavior of the Buyer or third parties, Solurion Meccaniche, without warning, will protect their own interests In the menta trapproject ways.

9) Phataping The padaging used to pack in the goods to be shipped out to the Buyer will be involved to them, applying the real cost borne by Solutioni Mecaniche only, unless otherwise agreed upon in offers/ordens.

nyment Will have to be made following terms and ways defined in either offer or order confirmation. We relterate once more, that partial or boal nonpayment of what is due by the Buyer, will net validate the Warrany on goods or services

failure to pay within an agreed time will entite 5 our zoni Meccaniche to ask the Bayerfor the settlement of interests due, at the rate established by the Legislative Decree n. 21102, from the exploration date of each single invoice to their all settlement

hilling to be a the data in the data in the data will be solution becaricle the right to supend delivery of the Products and terminate any angle Sate greed upon. Nether supersion of Products delivery not termination of hier concerning Products and/or their delivery will any case justify the supersion or delay in payment.

L) Breach of Contract

may consider the contract as

Stoud the Buyer fail to able payment terms and/or any other Contractual condition, Soluzioni Meccaniche will have the right to suspend or postpone the execution of supplies. That is, Soluzioni Meccaniche terminated subject to possibly act for requesting damages.

12 phyciobal surgups Applicable way and stratection. The version to be regard and phyciobal way and scalarship theore in the tabian language. Therefore, in case of interpretation issues, the tabian version must be referred to, repurdes of whether the under-signed Conditions were translated into other language. All disputes avairage out of or valued to these Terms and conditions for sale and jorts any sale will be subject to the excition physical scalar of the current ford and only the tabian have will be applicable.

13) Termination Clause Parsuanto article n. 1456 of the Italian Civil Code, Solucioni Mecanickte may terminate, at any time, by written notice to the Buyer, the single sale in the event of tarch of the obligations laid down in Articles 10 (Payment); 8 (Intellectual

14) Change in the Flancial Conditions of the Buyer Boundont Mecanick will sentiske to support the fulfilment of the obligations arising from the Sale of the Poducty, under Articken. 1483 of the Italian Civil Code, in the event that the Flancial conditions of the Buyer would become liable loop and artic the autoencome in the conditionation. Under sufficient guarantees region.

(3) Skity Fraily, we highlight that the Bask. User and Maintenance Manual which will be supplied by Solucion Neccandra to the Buyer, will report the searchial and basic information about the use of the Products supplied intended to provent Fraily, we highlight that the Bask. User and Maintenance Manual, is had (will be solucion Neccandra to take and Basel and Bask and B

rules, will certainly help in many dangerous situations the Buyer will meet in the use or maintenance remembering that security must remain, however, the main interest and responsibility for the Buyer.

Instriaur, the Bayer dedrares that they specifically accorded and understood, a sociodances with Aricles n. 131 and n. 132, the following terms and conditions of stupply better specified above, and in particulars. 1) Definitions. 2) Offer Instrument of conditional and the specifical and the specifical and a specifical and the specific

The present GENERAL TERM S AND CONDITIONS FOR SALE are valid from the date of issue. They may be modified without prior notice, and will be valid from the date of new publication.

The buyer expressly declares to be aware and integrally accept the present GENERAL TERMS AND CONDITIONS FOR SALE of Soluzioni Meccaniche S.R.L.

Via F.Ili Lumière 45 47122 Forlì (FC), Italy

Phone: +39 0543 463311 info@bamar.it

bamar.it Bamar is a Soluzioni Meccaniche brand